Transocean Lifting Course Wire Rope Examination

- Inspection and examination differences
- Standards and Legislation
- What is a wire rope? types/description
- Rope deterioration
- Examination procedures
- Individual discard criteria
- Cumulative effect and records
- Short written test

The difference between rope inspection and examination - Inspection

- Inspection visual check to ensure that all ropes are correctly positioned on their sheaves and drums and have not been displaced
- When carried out routine pre-use check daily before start-up
- By whom driver/operator may be authorised to carry out periodic checks and inspections to the extent that he is considered to be competent

The difference between rope inspection and examination - Inspection

- Inspection visual inspection of all ropes for broken wires, flattening, basket distortion or other signs of damage, excessive wear and surface corrosion
- When carried out weekly, two weekly or monthly as determined by the competent person
- By whom the appointed person [the driver/operator may be authorised to carry out periodic checks and inspections to the extent that he is considered to be competent]

The difference between rope inspection and examination – Thorough examination

- Thorough examination in-depth visual inspection plus (when practical) assessment of internal condition of rope, supplemented by other means such as diameter measurement and NDT (e.g. electro-magnetic)
- When pre-determined routine intervals (e.g. as determined by legislation); after installation on new site; after major alteration or repair; or after occurrence of exceptional circumstances which may jeopardise the safety of the crane

Thorough examination – Competent person

- Should be trained and assessed (with documentary evidence) for the type of ropes and terminations that are to be examined
- Should be independent and impartial to allow objective decisions to be made (recommendations made without fear or favour)
- Should be fully conversant with the manufacturer's instructions
- Should be fully conversant with the relevant Standards/Codes applicable to the ropes and equipment being examined (e.g. ISO 4309; API 2D)

Primary Functions of Rope Examiner (Competent person)

To establish the condition of a rope

 To assess whether or not it is fit (i.e. safe) to remain in service

Competent Person should take into account

- Current regulations (Local / National (e.g. LOLER)/European)
- Machinery handbook (safe use/discard criteria)
- Related standards/Codes of practices (e.g. ISO 4309; API 2D)
- Rope duty/Reeving system
 - Frequency of use

Previous rope history (performance/rope type)

Two basic types of rope

Stranded rope

Spiral rope

Stranded Rope - 3 basic types

Blue Strand Dyform 34LR

Single layer

Rotation-resistant

Parallel-closed

DSC 8

Spiral Rope - 3 basic types

Spiral strand

Full-locked coil

Half-locked coil

Stranded Rope Single Layer

- One layer of outer strands (usually 6 or 8)
 laid helically over a centre core of fibre or steel
- Illustration rope with independent wire rope core (IWRC)

Cores for stranded steel wire rope

 The core maintains the circular section of the rope by supporting the strands around it

2 main types of core:

- Fibre cores
 - natural (e.g. Manila, Jute or Sisal) = FC
 - man made (e.g. polypropylene) = FFC
- Steel cores
 - Independent Wire Rope Core = IWRC or Wire Strand Core = WSC
 - Core covered with polymer = PIWRC

Right Hand Lay Ropes

Right Hand Langs (RHL)

Left Hand Lay Ropes

Left Hand Langs (LHL)

Rope Grade (*R***_r)**

Identifies the level of minimum breaking force (kN) or minimum breaking load (t)

- Examples
 - 1770 Grade
 - 1960 Grade
 - 2160 Grade

- American Grades
 - IPS
 - EIPS
 - EEIPS

- 1370/1770 Grade
 - (dual tensile)

Tensile Strength and Finish of Wire

- Wire tensile strength grade
 - Examples
 - 1180; 1370; 1570; 1770; 1960; 2160 N/mm²
- Wire finish
 - Examples
 - bright (ungalvanised)
 - zinc coated (galvanised) [or zinc alloy coated]

Example of Rope Description/Designation

22mm dia. 6x36 IWRC 1960 Ung/BT RHO

- 22mm 6x36WS-IWRC 1960 U sZ (New European and International standards designation)
 - 22mm dia
 - **6x36**
 - IWRC
 - 1960
 - Ung
 - RHO

- **Size** (nominal diameter)
- Rope construction
- Core type
 - Rope grade
 - Finish of wires
 - Direction and type of lay
Rotation-resistant rope

(Ilustration is BRIDON product 35LS - Low rotation rope)

Summary of Rope Lays (Stranded ropes)

- Ordinary Lay (RHO or LHO) sZ or zS
- Langs Lay (RHL or LHL) zZ or sS
- Alternate Lay
 aZ or aS

- More wires in the outer strand (e.g. 6x36) will give improved fatigue characteristic
- Less wires in the outer strand (e.g. 6x19S) will give improved wear/abrasion characteristic
- Steel core (IWRC) better resists drum crushing than fibre core (FC) rope
- Langs lay resists interference better than ordinary lay
 BUT both ends must be fixed if single layer (6 or 8 strand rope) or parallel-closed type (DSC)

Rope performance characteristics
 Additional factor which can affect rope performance

Lubrication

During manufacture

In service

Effect of lubrication Bend fatigue tests - DYFORM 34LR

Bending fatigue

Pulsatary (tension-tension) fatigue

• Torsional fatigue

Bending fatigue resistance Bridon Dyform[®] 6 v Blue strand [®]

Continuous cycling - Constant tension – Zero fleet angle

TERMINOLOGY

- Minimum breaking force of rope MBF
- Minimum breaking load of rope MBL
- Working load limit WLL
- Safe working load SWL
- Ultimate strength of fitting
- Design factor/safety factor/factor of safety/coefficient of utilisation
- Terminal efficiency
- Bending ratio (D:d) sheave dia:rope dia

Rope Deterioration →Loss in strength → Ultimate failure

Factors Causing Rope Deterioration

Normal wear and tear Abrasion Fatigue **Corrosion** (internal/external/fretting) **Mechanical damage Deformations Rotation** Thermal damage (overheating) **Termination failures**

EXTERNAL WEAR

 Can also be affected by environmental conditions, e.g. abrasive dust

EXTERNAL WEAR

- Influenced by the following:
 - Rope tension
 - Size of drum /size of sheave
 - Number of sheaves in system
 - Condition of drum / sheave(s)
 - Rate of acceleration
 - Momentum of sheave(s)/roller(s)
 - Fleet angle & spooling arrangement at drum
 - Incorrect methods of operation

Examples of external wear

INTERNAL WEAR

- Results from pressure, stress and internal friction
- Influenced by
 - Level of rope tension and amplitude
 - Bending ratio and frequency of bending
 - Amount of lubricant/dressing in service

INTERNAL WEAR

Unable to assess without opening rope up

Examples of Internal Wear and Corrosion

Severe wear - abrasion

- Expected associated with normal duty

 e.g. drag rope on dragline; trawl warp
- Unexpected

 – e. g. contact with adjacent structure; seized sheave/pulley/roller/fairlead; undersized sheaves/pulleys; misaligned sheaves/pulleys

Abnormal abrasion = Heat generated + cooling at rapid rate = Possibility of martensite (exceptionally hard skin with transverse cracks) being formed
Example of abrasive wear

Examples of External and Internal Corrosion

MECHANICAL DAMAGE

- What is the most common reason for Discard ?
- During storage/handling
- During installation forming kinks & bends
- In service rope jumping out of sheave
- Incorrectly profiled sheave grooves
- Poor/uncontrolled spooling at drum

THERMAL DAMAGE

- Too high operating temperature loss in strength
- Improperly grounded welding leads localised damage

Deformations

- Can result from:
 - incorrect installation procedure
 - shock loading
 - unacceptable fleet angle causing rolling of rope
 - tight groove profiles

Example of 'birdcage' due to incorrect method of installation

Incorrect handling during installation

This method will cause rope damage!

'Bird Cage'

ROTATION / TURN

- Incorrect handling/installation techniques
- Incorrect use of swivel
- Wrong rope for job

FATIGUE

Bending fatigue

Resulting in Broken Wires

Tension - tension fatigue

Torsional fatigue

Examples of Broken Wires Due to Fatigue

upper rope: 6 strand lower rope: rotation-resistant

TERMINATION FAILURES

- Incorrect fitting of termination
- Failure to maintain (e.g. re-terminate wedge socket) in service
- Incorrect selection of termination
- Inadequate inspection / examination

Examples of termination failures

CERTIFICATE OF TEST OF WIRE ROPE Test Certificate Number Z12345A / F1851923/51

DESCRIPTION OF WIRE ROPE

Trulift 8F 13 mm dia 8x19S FC 1370/1770 BT RHO ZL010005 MBL 6,45t

Rope Number	Z12345A	
Quantity and Rope Length	1 x 2800	(m)
Date of Manufacture	05/08/96	
DETAILS OF TEST		
Method of Test	IS0 3108	
Date of Test	05/08/96	
Breaking Load	> 6,45	(t)
Safe Working Load		.,
at a Coofficient of Utilication of 5 *	1 20	/+)

OTHER INFORMATION

Testing Machine Calibrated to BS EN 10002-2 BRIDON Product Code : 13.00819AF11RA Actual breaking load - 7,02t * If the rope is to be used at a coefficient of utilisation different from

the example above it chould be re-rated by a competent percent

Rope Strength

Unit

- Minimum Breaking Force MBF kN or - Minimum Breaking Load MBL tf

(MBF/9.81=MBL)

Tool kit

- Rope caliper/vernier
- Sheave groove gauge
- Tape measure
- Chalk/electricians
 tape

- Cleaning materials
- Notebook & pencil (or tape recorder)
- Pliers
- Clamps (wood or steel)
- Straight edges
- **"T" needle** (flat spike with rounded edges; modified screwdriver)
- ppe

Rope dimensions – caliper/vernier

Actual (measured) diameter 22.2 mm Nominal diameter (d) 22 mm

Measurement of rope diameter New rope

- Take 2 measurements at right angles at two positions spaced approximately one metre apart (Measurements taken over strand crowns – see figure)
- Average of the four measurements is the rope diameter

Checking of sheave groove profile

Groove gauge to check for wear

Also visually check for corrugations – the rope imprint in the groove surface

 Also visually check for broken or chipped flanges

Checking Sheave Groove Profile

Where To Examine - Critical Areas (typical but not exhaustive list)

- Points of attachment outboard and inboard ends of the rope
- Rope at compensating sheave
- Dead laps and cross-over points at drum
- Rope running through sheave(s)
- Rope spooling on/off drum
- Areas exposed to abnormal environmental conditions
- Areas subject to damage or likely to be damaged

Areas of Deterioration Simple two fall reeving system

- Witness passage of rope through complete operating cycle
- Determine areas where greatest deterioration is likely to occur
 - (e. g. coinciding with pick-up of load)

Sheave

WHAT TO LOOK FOR - At drum -(Principal modes of deterioration)

- At drum anchorage
 - corrosion/evidence of rope movement (e.g. slip)
- In dead wraps
 - corrosion/localised damage from overlying layers
- At cross-over points
 - localised damage
- Portion entering and exiting drum at pick up point
 - corrosion/wear/broken wires/deformations

WHAT TO LOOK FOR - At Rope Termination -Wire breaks at or near rope entry Corrosion **Abrupt reduction in rope diameter** (suggesting core failure) **Abnormal rope movement** (out of the termination) Evidence of rope end **Evidence of any incorrect fitting** Evidence of any unusual component wear

Internal Examination of Ropes Rope running through sheave(s) Use of clamps – rope under no tension

- Attach clamps approximately 100mm-200mm apart
- Contra-rotate clamps to unlay outer strands
- Ensure strands are not excessively moved avoiding any permanent deformation
- Manipulate strands with probe to facilitate examination
- Check -
 - presence of any broken wires
 - presence of any interwire pressure
 - degree of corrosion
 - state of internal lubrication
- Apply dressing
- Apply additional reverse torque to re-bed strands on core

Internal Examination of Ropes (At rope termination) Use of clamps – rope under no tension

- Only ONE clamp necessary
- Rotate clamp to unlay outer strands
- Manipulate strands with probe to facilitate examination

Internal Examinations of Ropes (At rope termination)

- Check for presence and significance of:
 - any broken wires
 - any interwire pressure/friction marks
 - any corrosion
 - internal lubrication
- Apply service lubricant at examination location before closing up rope
- Apply additional reverse torque to re-bed strands

The 9 Key Points of Discard Criteria

- **1** Randomly distributed visible broken wires
- **2** Local groups of visible broken wires
- **3** Visible broken wires in the immediate vicinity of the rope termination
- **4** Core deterioration
- **5** Wear (expressed as reduction in diameter below nominal)
- **6** Internal corrosion
- 7 External corrosion
- 8 Deformations
- 9 Thermal damage

Ropes Operating in Synthetic Sheaves

- Wire breaks may occur in large numbers internally before there is any evidence of external wear or wire breaks
- Manufacturer of the appliance should specify the particular discard criteria
- The number of allowable visible broken wires should never be greater than ONE HALF of the numbers shown for ropes operating in metal sheaves
- Particular attention should be paid to any localised area exhibiting dryness or denaturing of the lubrication

LOCALIZED GROUPING OF BROKEN WIRES (Discard)

May be necessary to discard rope even if number is fewer than those given in Tables 1 and 2

3 DETERIORATION AT OR WITHIN VICINITY OF ROPE TERMINATION

Discard when

absolute maximum of 3 broken wires at rope termination - <u>but consider replacement when</u> <u>only 1 is evident at rope entry</u> - difficult to find

4 CORE DETERIORATION

(Discard)

Characterised by abrupt reduction in diameter

Key Points of Rejection / Discard Criteria5Reduction in dia – ISO 4309

Rope Type	Reject/Discard Criteria
6 & 8 strand engineering rope	10% (7% if abrasive wear only)
Rotation-resistant	3%
6 & 8 strand lift (elevator) rope	6%

Key Points of Rejection / Discard Criteria 6 CORROSION - INTERNAL (Discard)

CORROSION - EXTERNAL

(Assess degree of severity)

Discard rope when wires are slack and badly pitted, i.e. individual RF = 100

If surface rust can be removed without leaving any pitted wires - assume 10% to 20% towards discard, i.e. individual RF = 10 to 20

8 DEFORMATIONS

(Assess degree of severity where appropriate)

Discard rope:

Wavy - max. height of wave = 4/3 x d in standing part; 1,1 x d over sheave or drum

Permanent bend (or dog leg); Flattened; Basket/birdcage; Core exits rope between outer strands; Wires exude from strands; Kink
Key Points of Rejection / Discard Criteria

9 THERMAL DAMAGE

(Discard)

Examiner's Record (example only) - based on BS ISO 4309 discard criteria (18/30d)

Rope:	22mm 6 x 36 IWRC
Appliance:	Smiths 8T O.H.T.C.
Location:	BOS Plant

Certifica Date fitte

 Certificate No.
 15/1234/1234/01

 Date fitted
 1.1.01

Degree of degradation												Condition	Examiners	
Date	Broken wires (in 30d)			Diameter measurement		Deformations			Corrosion		Total	of	Notes and	
	No.	Position	R.F.	Dia	Position	R.F.	Туре	Position	R.F.	Position	R.F.	R.F.	lubrication	Signature
1.6.01	0	_	0	22.3	At drum	0		-	-	-	0	0	Good	J. Smith
2.12.01	0		0	22.0	At drum	0	•	-	0	•	0	0	Good	Possible damage at one point on drum J. Smith
5.6.02	0	-	0	21.6	At drum	20	•	-	0	· ·	0	20	Dry	Dress rope. No rope damage at drum J. Smith
7.11.02	4	Pick up on drum	20	21.1	Pick up point on drum	40	•	-	0		0	60	Good	Reduce inspection to 3 months - J. Smith
2.3.03	7	Pick up point on drum	40	21.1	Pick up point on drum	40	•	-	0		0	80	Good	Recommend rope be removed within 3 months (Check
2.3.03	4	10 metres from hook	20	21.2.	10 metres from hook	40								availability of spare rope - J. Smith)
2.3.03	5	21 Metres from hook	30	21.2	21 metres from hook	40								
2.6.03	11	Pick up point on drum	60	21.0	Pick up point on drum	40	•	-	0		0	100	Dry	Reject rope J. Smith
2.6.03	7	10 metres from hook	40	21.1	10 metres from hook	40								
2.6.03	7	21 metres from hook	40	21.1	21 metres from hook	40								